Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2019

Ishimaru, Tsuneari; Ogata, Nobuhisa; Kokubu, Yoko; Shimada, Koji; Hanamuro, Takahiro; Shimada, Akiomi; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Sueoka, Shigeru; et al.

JAEA-Research 2020-011, 67 Pages, 2020/10

JAEA-Research-2020-011.pdf:3.87MB

This annual report documents the progress of research and development (R&D) in the 5th fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2015

Ishimaru, Tsuneari; Umeda, Koji*; Yasue, Kenichi; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Yokoyama, Tatsunori; Fujita, Natsuko; Shimizu, Mayuko; et al.

JAEA-Research 2016-023, 91 Pages, 2017/02

JAEA-Research-2016-023.pdf:13.33MB

This annual report documents the progress of research and development (R&D) in the 1st fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this paper, the current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Progress report on safety research on radioactive waste management for the period April 1995 to March 1996

Sekine, Keiichi; Muraoka, Susumu; Bamba, Tsunetaka

JAERI-Review 97-007, 61 Pages, 1997/03

JAERI-Review-97-007.pdf:2.18MB

no abstracts in English

JAEA Reports

A Generic safety assessment code for geologic disposal of radioactive waste; GSRW computer code users manual

Kimura, Hideo; Takahashi, Tomoyuki; ; Matsuzuru, Hideo

JAERI-M 92-161, 72 Pages, 1992/11

JAERI-M-92-161.pdf:1.91MB

no abstracts in English

Journal Articles

Radionuclide migration in the geosphere; A 1D advective and dispersive transport module for use in probabilistic system assessment codes

P.Prado*; Homma, Toshimitsu; A.Saltelli*

Radioact. Waste Manage. Nucl. Fuel Cycle, 16(1), p.49 - 68, 1991/00

no abstracts in English

Oral presentation

Geosphere stability project, 6; Chronological and chemical analyses of carbonate minerals

Watanabe, Takahiro; Kokubu, Yoko; Murakami, Hiroaki; Yokoyama, Tatsunori; Amamiya, Hiroki; Mizuno, Takashi; Kubota, Mitsuru; Iwatsuki, Teruki

no journal, , 

Chronological and geochemical studies of fracture filling calcite in rocks provide the information for changes in geochemical condition, such as redox potential and pH in geological environments. Because the calcite can be found as common filling minerals in the natural samples, age zoning and spatial distribution of chemical composition in the calcite could be a wide-use indicator to reconstruct the past environmental changes. Radiometric (U-Pb) dating in a micro scale area (less than 10 micrometer) on the filling mineral surface by laser ablation-inductively coupled plasm mass spectrometry system (LA-ICPMS) has been applied to geological samples. Additionally, past redox potential has been estimated by Fe contents in the carbonates, which is based on the distribution coefficient of Fe between calcite deposit and groundwater. In this study, we evaluated the possibility of in-situ radiometric dating for the filling minerals by LA-ICPMS and redox potential reconstruction by the theoretical calculation using the distribution coefficient.

6 (Records 1-6 displayed on this page)
  • 1